• Latest
  • Trending
Balancing Risks in the Seitah Region for Flight 24

Balancing Risks in the Seitah Region for Flight 24

April 6, 2022
Explanation found for encrusting of the Martian soil

Explanation found for encrusting of the Martian soil

October 31, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Perseverance surveys its path as it ascends Jezero Crater

October 28, 2024
Astrobotic to conduct NASA JPL studies for Mars missions

USTC unveils high-energy Mars battery with extended lifespan for exploration

October 28, 2024
Crystals brought back by astronauts show that the Moon is 40 million years older than scientists thought

Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024

October 27, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Red Rocks with Green Spots at ‘Serpentine Rapids’

October 27, 2024
NASA selects crew for 45-day simulated Mars mission in Houston

NASA selects crew for 45-day simulated Mars mission in Houston

October 23, 2024
Potential microbial habitats in Martian ice

Potential microbial habitats in Martian ice

October 18, 2024
Perseverance just keeps roving across Mars

Perseverance just keeps roving across Mars

October 18, 2024
New Team Evaluates Plans for NASA’s Mars Sample Return Program

New Team Evaluates Plans for NASA’s Mars Sample Return Program

October 17, 2024
Sandia evaluates heat shields for Mars Sample Return and Titan missions

Sandia evaluates heat shields for Mars Sample Return and Titan missions

October 16, 2024
NASA probe Europa Clipper lifts off for Jupiter’s icy moon

NASA probe Europa Clipper lifts off for Jupiter’s icy moon

October 14, 2024
Here’s How Curiosity’s Sky Crane Changed the Way NASA Explores Mars

Controlled Propulsion for Gentle Landings

October 13, 2024
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks
ToursInSpace.com
  • Home
  • About Tours in Space
No Result
View All Result
  • Home
  • About Tours in Space
No Result
View All Result
ToursInSpace.com
No Result
View All Result
Home Uncategorized

Balancing Risks in the Seitah Region for Flight 24

Ensign by Ensign
April 6, 2022
in Uncategorized
0
Balancing Risks in the Seitah Region for Flight 24
193
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter

Ingenuity continued its journey towards the river delta this weekend with Flight 24. This flight took place Sunday, April 3, and the data arrived back later that evening. The flight was the fourth of five sorties Ingenuity will make to cross the “Seitah” region of Jezero Crater and arrive in the vicinity of its delta. This multiflight shortcut across Seitah is being done to keep ahead of the Perseverance rover – which is currently making great time on a more circuitous route to the same area.

The Ingenuity and Mars 2020 teams have big plans for the helicopter at the delta. But they have to get there first, and prior to Flight 24 a crucial decision had to be made on which of three different flight plans offered the best chance of a successful delta arrival.

The three options on the table were:

Option A: a single, long flight.

Option B: two shorter flights.

Option C: a very short Flight 24 to make the long flight out of Seitah slightly easier than option A.

In deciding which of these options to greenlight, the Mars Helicopter team had to consider multiple factors: thermal, atmospheric conditions, flight time, drift, landing sites, and keeping up with the rover. We’ll explore each of these factors and what role they played in the overall risk assessment and selection of our decision.

Thermal Limitations

For spacecraft, “thermal” refers to the management of the temperatures of each component. Every part of Ingenuity has what is called Allowable Flight Temperatures (AFT), which give a range of temperatures at which each part is safe to operate. Even your phone or computer has a recommended temperature range: Too cold or too hot and it will not work as intended. Keeping “within AFTs” is critical for ensuring the health of Ingenuity, which means we are very careful to manage this – for example, by using heaters overnight when it is cold, and limiting activities during the day, when it is warmer. A particular challenge for Ingenuity is managing the temperature of its actuators, the servos and motors that allow it to fly (see some of these here). These components generate a lot of heat during flight, to the extent that the maximum flight time is often limited by the maximum AFT of these actuators.

Atmospheric Seasonal Conditions

If you have been following this blog, you will know that we have been operating with reduced air density since September, requiring an increase in rotor rpm from 2,537 to 2,700. Flight 14, for example, was a checkout flight to confirm Ingenuity could fly in these conditions. For all flights since then, Ingenuity has been successfully operating with 2,700 rpm. Unfortunately, though, using a higher rpm causes the actuators to heat more rapidly and reach their AFTs sooner, limiting maximum flight time. Practically, this has limited us to flights of 130 seconds or less.

Thankfully, we are toward the end of the Martian summer, with its low air density, and starting to move into the Martian fall, with higher air densities (see below), meaning we can now return to the 2,537 rpm of our first 13 flights. This change in rpm allows an increase in flight time to approximately 150 seconds. However, atmospheric density isn’t the only factor at play: The main driver of the changes in density is the temperature of the atmosphere, which also has a major impact on – you guessed it – the temperature of Ingenuity.

It is warmer now coming out of the summer than with our earlier flights in the spring. So even though we have been flying at 10:00 a.m. local mean solar time (LMST)- on Mars throughout the summer, Ingenuity has been hotter than flights at 12:00 LMST in the spring. A warmer atmosphere means warmer components, meaning we reach maximum AFTs sooner. This means, flying at 10:00 LMST, we still can’t fly for as long as we did previously, such as during Flights 9, 10, and 12.

Flight Time and Distance

With the current atmospheric conditions at Jezero Crater, the AFTs of the actuators are the limiting factor for the total flight time. Let’s take a more detailed look at the different options for Flight 24 and beyond:

Option A: The long flight out of the delta requires 170 seconds of flight, the maximum of our previous flights. This is not possible until the atmosphere cools down further.

Option B: The two shorter flights are operating the same as our previous “summer” flights: 130 seconds of flight time. This flight time is possible without any changes.

Option C: The first flight, a short hop, is designed to reduce the flight time needed for the second flight to 160 seconds. This is possible if we: i) reduce the rpm to 2,537, and ii) fly earlier in the sol to have lower atmospheric temperatures.

The team determined that by flying 30 minutes earlier, at 09:30 LMST, the flight time could be increased by 10 seconds. However, Ingenuity had never flown at 09:30 LMST before, so this would be a new “first.” And flying earlier brings with it associated risks with the charge state of the helicopter’s batteries: Ingenuity uses power to heat itself overnight and recharges its batteries with its solar panel, meaning the batteries have less charge in the morning. If we choose to fly at 9:30, we would first have to test it out – waking Ingenuity at this time without flying, to check that it would have sufficient charge for a flight.

In summary, the different maximum flight time options available are:

130 seconds (baseline)
150 seconds (decreased rpm)
160 seconds (decreased rpm and earlier flight time)

Flight time is normally equivalent to distance traveled, but it also depends on the maneuvers being performed. For example, rotating in place (called “yawing”), is done (at least at Mars) slowly, taking a handful of seconds with no distance traveled. For that reason, Mars Helicopter flights with more yaw maneuvers don’t travel as far in the same flight time.

All these factors come into play with option C – the short hop. This flight would enable the longer 160 second flight, for several reasons: 1) it is a check-out test for flying back at 2,537 rpm, 2) it is a test for flying at 09:30 LMST, and 3) it reduces the flight time for the subsequent flight by doing the time-consuming yaw maneuvers and moving slightly closer to the target for the second flight. All three of these steps are required to enable a 160-second flight out of the Seitah.

Drift

As discussed in previous blog posts, Ingenuity was a tech demo expecting to fly over flat ground. When flying over “non-flat” terrain such as hills, cliffs, large boulders and large dunes, Ingenuity’s estimate of its position and heading can drift. This drift leads to a wider area where it may land, called the landing ellipse. The farther it flies, the larger the potential drift, and the larger the landing ellipse. The Seitah region has many of these non-flat features (see the dunes and rocks in the image at the top, or on the interactive map), making it riskier for Ingenuity to fly over this region.

An additional challenge with the upcoming flights is the presence of hardware from Perseverance’s entry, descent, and landing (EDL), including the sky crane, parachutes and backshell. The green dots (in figure 1) show the predicted locations of this hardware from orbital imagery. Some of these components are under the flight path of option B, which presents a potential for unexpected performance from Ingenuity’s laser altimeter (a laser that measures the helicopter’s height above the surface) and visual odometry system, which could cause more drift.

Landing Sites

Each flight of Ingenuity has a planned landing ellipse (or sometimes just a landing region) that has been analyzed to be safe to touch down on, and to be large enough for the expected drift. The challenge is finding a large enough landing area that is free of hazards, such as rocks, large slopes, or even EDL hardware. Finding large landing sites is challenging in Seitah, so shorter flights are preferred, to reduce the potential drift, and hence reduce the required size of the landing ellipse. Outside of Seitah, the terrain is relatively flat and helicopter-friendly, allowing for large landing ellipses and long flights with greater drift. Let’s look at the different options and their landing sites:

Option A: one landing ellipse outside of the Seitah that is large and safe.

Option B: The landing ellipse for Flight 24 is within the Seitah, limiting its size, and requires a medium-distance flight, given less margin and making it slightly riskier than landing outside the Seitah.

Option C: The first landing site (for Flight 24) requires only a short flight, reducing the amount of potential drift, and it remains within the relatively large landing ellipse of the previous flight, 23.

Keeping up With the Rover

Perseverance is making great progress on its drive to the river delta, and it is important that Ingenuity keeps pace to arrive at the delta before the rover does. This is for two reasons: telecommunications and safety. Ingenuity only communicates with the helicopter base station on Perseverance, so it needs to stay close enough to have a good connection. For safety, it is ideal if Ingenuity flies ahead of Perseverance to avoid ever having to fly past or near the rover, to minimize the risk of any close contact in a worst-case scenario.

Balancing Risks

Let’s review each of the factors above to see which option gives the best set of trade-offs to balance risk:
Which option would you choose?

As is often the case in Ingenuity operations, there is no obvious solution that is the best for all factors: Trade-offs have to be made based on the available data and the judgment of team members. In this case, the helicopter team decided to go with option C.

Flight 24 Summary

With option C, flight 24 was a short hop and yaw at 09:30 LMST with 2,537 rpm, and set us up to exit Seitah on flight 25.

Flight #: 24
Goals: Test flight at 2,537 rpm, 09:30 LMST flight
Altitude: 10 meters
Time aloft: 69.5 seconds
Distance: 47 meters

With Flight 24 in our log book, it is now time to look forward to our upcoming effort that charts a course out of Seitah. Flight 25 – which was uplinked yesterday – will send Ingenuity 704 meters to the northwest (almost 80 meters longer than the current record – Flight 9). The helicopter’s ground speed will be about 5.5 meters per second (another record) and we expect to be in the rarefied Martian air for about 161.5 seconds.

See you at the delta!

Related Links

Mars Ingenuity Helicopter

Mars News and Information at MarsDaily.com
Lunar Dreams and more



Thanks for being here;

We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.


SpaceDaily Contributor

$5 Billed Once

credit card or paypal


SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



RelatedPosts

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

USTC unveils high-energy Mars battery with extended lifespan for exploration


MARSDAILY
SENER and Aerdron team up to develop drone to fly on Mars

Madrid, Spain (SPX) Mar 29, 2022


The European Space Agency (ESA) awarded SENER Aeroespacial the AERIAL project to design an unmanned aerial vehicle or drone capable of flying in the low density, pressure and temperature of the Martian atmosphere. AERIAL is the European proposal to conquer the Martian skies by increasing and improving the capabilities of classic ground exploration vehicles (rover) and avoiding dealing with the complicated terrain they face in their quest to search for scientific data.

SENER Aeroespacial is the com … read more


Tags: Mars
No Result
View All Result

Recent Posts

  • Explanation found for encrusting of the Martian soil
  • Perseverance surveys its path as it ascends Jezero Crater
  • USTC unveils high-energy Mars battery with extended lifespan for exploration
  • Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024
  • Red Rocks with Green Spots at ‘Serpentine Rapids’

Recent Comments

  • By Benjamin R on Gimme space
  • By Altoria N on Strictly plutonic
  • By Patrick Q on It’s just a phase
  • By Danny S on Strictly plutonic
  • By Alison H on Strictly plutonic

Categories

  • Excursions
  • Kepler Mission
  • NASA
  • NASA Breaking News
  • Physical Preparation
  • Preparation
  • Space News
  • Space Station News
  • Spacewalks
  • Uncategorized
  • Weightlessness Training
  • What Not to Pack
  • What to Pack

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com

No Result
View All Result
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com