• Latest
  • Trending
Estimating depositional timing on Mars using cosmogenic radionuclide data

Estimating depositional timing on Mars using cosmogenic radionuclide data

November 2, 2023
Explanation found for encrusting of the Martian soil

Explanation found for encrusting of the Martian soil

October 31, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Perseverance surveys its path as it ascends Jezero Crater

October 28, 2024
Astrobotic to conduct NASA JPL studies for Mars missions

USTC unveils high-energy Mars battery with extended lifespan for exploration

October 28, 2024
Crystals brought back by astronauts show that the Moon is 40 million years older than scientists thought

Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024

October 27, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Red Rocks with Green Spots at ‘Serpentine Rapids’

October 27, 2024
NASA selects crew for 45-day simulated Mars mission in Houston

NASA selects crew for 45-day simulated Mars mission in Houston

October 23, 2024
Potential microbial habitats in Martian ice

Potential microbial habitats in Martian ice

October 18, 2024
Perseverance just keeps roving across Mars

Perseverance just keeps roving across Mars

October 18, 2024
New Team Evaluates Plans for NASA’s Mars Sample Return Program

New Team Evaluates Plans for NASA’s Mars Sample Return Program

October 17, 2024
Sandia evaluates heat shields for Mars Sample Return and Titan missions

Sandia evaluates heat shields for Mars Sample Return and Titan missions

October 16, 2024
NASA probe Europa Clipper lifts off for Jupiter’s icy moon

NASA probe Europa Clipper lifts off for Jupiter’s icy moon

October 14, 2024
Here’s How Curiosity’s Sky Crane Changed the Way NASA Explores Mars

Controlled Propulsion for Gentle Landings

October 13, 2024
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks
ToursInSpace.com
  • Home
  • About Tours in Space
No Result
View All Result
  • Home
  • About Tours in Space
No Result
View All Result
ToursInSpace.com
No Result
View All Result
Home Uncategorized

Estimating depositional timing on Mars using cosmogenic radionuclide data

Ensign by Ensign
November 2, 2023
in Uncategorized
0
Estimating depositional timing on Mars using cosmogenic radionuclide data
190
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter

Estimating depositional timing on Mars using cosmogenic radionuclide data

by Nicolas Randazzo, Postdoctoral Scientist, University of Alberta

Pasadena CA (JPL) Nov 02, 2023

RelatedPosts

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

USTC unveils high-energy Mars battery with extended lifespan for exploration





As Perseverance continues to wrap up its current activities at Turquoise Bay where it collected a new sample for possible return to Earth, the Mars 2020 team is getting ready for Perseverance to approach the next site in the Margin Unit campaign, a site called Jurabi Point, also known as the “gateway” to Gnaraloo Bay. Here Perseverance will encounter what is known as a “triple junction” between the curvilinear or “Upper Fan” sedimentary rocks, the “Boulder-rich unit,” and the carbonate-containing Margin unit.

The carbonate rocks of the Margin unit are of particular interest from an astrobiological and a paleoclimatic perspective as carbonates are capable of preserving organic material, and can record information that could be used to reconstruct the depositional environment of the crater margin from which the latest sample came.

Jurabi Point is also exciting since it may be an excellent location to sample a boulder. This is because a sample from a boulder deposited near the later stages of the Jezero paleolake can be used for what is known as cosmogenic radionuclide dating. This type of dating has been used many times for deposits on Earth and is useful for estimating how long the ancient sedimentary deposits have been exposed at the surface. This would allow researchers to place a time constraint on when the youngest sediments in the Western Jezero Fan were deposited.

Cosmogenic radionuclide dating works due to Mars’ surface being bombarded by high-energy cosmic rays produced by supernovae. But the cosmic rays only penetrate about a meter below the planet’s surface. When cosmic rays bombard, say, a recently deposited boulder, nuclei of the chemical elements within the rock will be shattered in a process called spallation. The concentration of the resulting fragments – newly formed isotopes – can be measured to calculate how long the boulder has been exposed within about a meter of the surface.

That duration provides a limit on when the boulders were deposited on the fan. With the long exposure durations expected on Mars the cosmogenic isotopes of choice are stable, including 3He, 21Ne, and 36,38 Ar. These isotopes will accumulate from spallation of common elements such as oxygen, silicon, and calcium.

Related Links

Perseverance Mars 2020

Mars News and Information at MarsDaily.com
Lunar Dreams and more

Tags: Mars
No Result
View All Result

Recent Posts

  • Explanation found for encrusting of the Martian soil
  • Perseverance surveys its path as it ascends Jezero Crater
  • USTC unveils high-energy Mars battery with extended lifespan for exploration
  • Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024
  • Red Rocks with Green Spots at ‘Serpentine Rapids’

Recent Comments

  • By Benjamin R on Gimme space
  • By Altoria N on Strictly plutonic
  • By Patrick Q on It’s just a phase
  • By Danny S on Strictly plutonic
  • By Alison H on Strictly plutonic

Categories

  • Excursions
  • Kepler Mission
  • NASA
  • NASA Breaking News
  • Physical Preparation
  • Preparation
  • Space News
  • Space Station News
  • Spacewalks
  • Uncategorized
  • Weightlessness Training
  • What Not to Pack
  • What to Pack

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com

No Result
View All Result
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com