• Latest
  • Trending
Analysis of Mars's wind-induced vibrations sheds light on the planet's subsurface properties

Analysis of Mars's wind-induced vibrations sheds light on the planet's subsurface properties

November 25, 2021
Explanation found for encrusting of the Martian soil

Explanation found for encrusting of the Martian soil

October 31, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Perseverance surveys its path as it ascends Jezero Crater

October 28, 2024
Astrobotic to conduct NASA JPL studies for Mars missions

USTC unveils high-energy Mars battery with extended lifespan for exploration

October 28, 2024
Crystals brought back by astronauts show that the Moon is 40 million years older than scientists thought

Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024

October 27, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Red Rocks with Green Spots at ‘Serpentine Rapids’

October 27, 2024
NASA selects crew for 45-day simulated Mars mission in Houston

NASA selects crew for 45-day simulated Mars mission in Houston

October 23, 2024
Potential microbial habitats in Martian ice

Potential microbial habitats in Martian ice

October 18, 2024
Perseverance just keeps roving across Mars

Perseverance just keeps roving across Mars

October 18, 2024
New Team Evaluates Plans for NASA’s Mars Sample Return Program

New Team Evaluates Plans for NASA’s Mars Sample Return Program

October 17, 2024
Sandia evaluates heat shields for Mars Sample Return and Titan missions

Sandia evaluates heat shields for Mars Sample Return and Titan missions

October 16, 2024
NASA probe Europa Clipper lifts off for Jupiter’s icy moon

NASA probe Europa Clipper lifts off for Jupiter’s icy moon

October 14, 2024
Here’s How Curiosity’s Sky Crane Changed the Way NASA Explores Mars

Controlled Propulsion for Gentle Landings

October 13, 2024
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks
ToursInSpace.com
  • Home
  • About Tours in Space
No Result
View All Result
  • Home
  • About Tours in Space
No Result
View All Result
ToursInSpace.com
No Result
View All Result
Home Uncategorized

Analysis of Mars's wind-induced vibrations sheds light on the planet's subsurface properties

Ensign by Ensign
November 25, 2021
in Uncategorized
0
Analysis of Mars's wind-induced vibrations sheds light on the planet's subsurface properties
190
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter

Seismic data collected in Elysium Planitia, the second largest volcanic region on Mars, suggest the presence of a shallow sedimentary layer sandwiched between lava flows beneath the planet’s surface. These findings were gained in the framework of NASA’s InSight mission, in which several international research partners, including the University of Cologne, collaborate. The paper ‘The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations’ will appeared in Nature Communications on 23 November.

Geophysicist Dr Cedric Schmelzbach from ETH Zurich and colleagues, including the earthquake specialists Dr Brigitte Knapmeyer-Endrun and doctoral researcher Sebastian Carrasco (MSc) from the University of Cologne’s Seismic Observatory in Bensberg, used seismic data to analyse the composition of the Elysium Planitia region.

The authors examined the shallow subsurface to around 200 metres in depth. Right beneath the surface, they discovered a regolith layer of dominantly sandy material approximately three metres thick above a 15 metre layer of coarse blocky ejecta – rocky blocks that were ejected after a meteorite impact and fell back to the surface.

Below these top layers, they identified around 150 metres of basaltic rocks, i.e., cooled and solidified lava flows, which was largely consistent with the expected subsurface structure. However, between these lava flows, starting at a depth of about 30 metres, the authors identified an additional layer 30 to 40 metres thick with low seismic velocity, suggesting it contains weak sedimentary materials relative to the stronger basalt layers.

To date the shallower lava flows, the authors used crater counts from existing literature. Established knowledge about the impact rate of meteorites allows geologists to date rocks: surfaces with many impact craters from meteorites are older than ones with fewer craters. Also, craters with larger diameters extend into the lower layer, allowing the scientists to date the deep rock, while smaller ones allow them to date the shallower rock layers.

They found that the shallower lava flows are approximately 1.7 billion years old, forming during the Amazonian period – a geological era on Mars characterized by low rates of meteorite and asteroid impacts and by cold, hyper-arid conditions, which began approximately 3 billion years ago. In contrast, the deeper basalt layer below the sediments formed much earlier, approximately 3.6 billion years ago during the Hesperian period, which was characterized by widespread volcanic activity.

The authors propose that the intermediate layer with low volcanic velocities could be composed of sedimentary deposits sandwiched between the Hesperian and Amazonian basalts, or within the Amazonian basalts themselves. These results provide the first opportunity to compare seismic ground-truth measurements of the shallow subsurface to prior predictions based on orbital geological mapping.

Prior to the landing, Dr Knapmeyer-Endrun had already developed models of the velocity structure of the shallow subsurface at the InSight landing site based on terrestrial analogues. The actual measurements now indicate additional layering as well as more porous rocks in general.

‘While the results help to better understand the geological processes in Elysium Planitia, comparison with pre-landing models is also valuable for future landed missions, since it can help to refine predictions,’ Knapmeyer-Endrun remarked. Knowledge of the properties of the shallow subsurface is required to assess, for example, its load-bearing capacity and trafficability for rovers.

Besides, details on the layering in the shallow subsurface help to understand where it might still contain ground water or ice. Within the framework of his doctoral research at the University of Cologne, Sebastian Carrasco will continue to analyse the effect of the shallow structure of Elysium Planitia on marsquake recordings.

The InSight lander arrived on Mars on 26 November 2018, touching down in the Elysium Planitia region. Mars has been the target of numerous planetary science missions, but the InSight mission is the first to specifically measure the subsurface using seismic methods.

Research paper

Related Links

University of Cologne

Mars News and Information at MarsDaily.com
Lunar Dreams and more



Thanks for being here;

We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.


SpaceDaily Contributor

$5 Billed Once

credit card or paypal


SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



RelatedPosts

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

USTC unveils high-energy Mars battery with extended lifespan for exploration


MARSDAILY
NASA’s InSight finds three big marsquakes, thanks to solar-panel dusting

Pasadena CA (JPL) Sep 24, 2021


The lander cleared enough dust from one solar panel to keep its seismometer on through the summer, allowing scientists to study the three biggest quakes they’ve seen on Mars.

On Sept. 18, NASA’s InSight lander celebrated its 1,000th Martian day, or sol, by measuring one of the biggest, longest-lasting marsquakes the mission has ever detected. The temblor is estimated to be about a magnitude 4.2 and shook for nearly an hour-and-a-half.

This is the third major quake InSight has detected in a m … read more


Tags: Mars
No Result
View All Result

Recent Posts

  • Explanation found for encrusting of the Martian soil
  • Perseverance surveys its path as it ascends Jezero Crater
  • USTC unveils high-energy Mars battery with extended lifespan for exploration
  • Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024
  • Red Rocks with Green Spots at ‘Serpentine Rapids’

Recent Comments

  • By Benjamin R on Gimme space
  • By Altoria N on Strictly plutonic
  • By Patrick Q on It’s just a phase
  • By Danny S on Strictly plutonic
  • By Alison H on Strictly plutonic

Categories

  • Excursions
  • Kepler Mission
  • NASA
  • NASA Breaking News
  • Physical Preparation
  • Preparation
  • Space News
  • Space Station News
  • Spacewalks
  • Uncategorized
  • Weightlessness Training
  • What Not to Pack
  • What to Pack

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com

No Result
View All Result
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com