• Latest
  • Trending
New clues about Mars' early atmosphere suggest a wet planet capable of supporting life

New clues about Mars' early atmosphere suggest a wet planet capable of supporting life

September 22, 2022
Explanation found for encrusting of the Martian soil

Explanation found for encrusting of the Martian soil

October 31, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Perseverance surveys its path as it ascends Jezero Crater

October 28, 2024
Astrobotic to conduct NASA JPL studies for Mars missions

USTC unveils high-energy Mars battery with extended lifespan for exploration

October 28, 2024
Crystals brought back by astronauts show that the Moon is 40 million years older than scientists thought

Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024

October 27, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Red Rocks with Green Spots at ‘Serpentine Rapids’

October 27, 2024
NASA selects crew for 45-day simulated Mars mission in Houston

NASA selects crew for 45-day simulated Mars mission in Houston

October 23, 2024
Potential microbial habitats in Martian ice

Potential microbial habitats in Martian ice

October 18, 2024
Perseverance just keeps roving across Mars

Perseverance just keeps roving across Mars

October 18, 2024
New Team Evaluates Plans for NASA’s Mars Sample Return Program

New Team Evaluates Plans for NASA’s Mars Sample Return Program

October 17, 2024
Sandia evaluates heat shields for Mars Sample Return and Titan missions

Sandia evaluates heat shields for Mars Sample Return and Titan missions

October 16, 2024
NASA probe Europa Clipper lifts off for Jupiter’s icy moon

NASA probe Europa Clipper lifts off for Jupiter’s icy moon

October 14, 2024
Here’s How Curiosity’s Sky Crane Changed the Way NASA Explores Mars

Controlled Propulsion for Gentle Landings

October 13, 2024
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks
ToursInSpace.com
  • Home
  • About Tours in Space
No Result
View All Result
  • Home
  • About Tours in Space
No Result
View All Result
ToursInSpace.com
No Result
View All Result
Home Uncategorized

New clues about Mars' early atmosphere suggest a wet planet capable of supporting life

Ensign by Ensign
September 22, 2022
in Uncategorized
0
New clues about Mars' early atmosphere suggest a wet planet capable of supporting life
192
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter

New research published in Earth and Planetary Science Letters suggests that Mars was born wet, with a dense atmosphere allowing warm-to-hot oceans for millions of years. To reach this conclusion, researchers developed the first model of the evolution of the Martian atmosphere that links the high temperatures associated with Mars’s formation in a molten state through to the formation of the first oceans and atmosphere.

This model shows that – as on the modern Earth – water vapor in the Martian atmosphere was concentrated in the lower atmosphere and that the upper atmosphere of Mars was “dry” because the water vapor would condense out as clouds at lower levels in the atmosphere.

Molecular hydrogen (H2), by contrast, did not condense and was transported to the upper atmosphere of Mars, where it was lost to space. This conclusion – that water vapor condensed and was retained on early Mars whereas molecular hydrogen did not condense and escaped – allows the model to be linked directly to measurements made by spacecraft, specifically, the Mars Science Laboratory rover Curiosity.

“We believe we have modeled an overlooked chapter in Mars’s earliest history in the time immediately after the planet formed. To explain the data, the primordial Martian atmosphere must have been very dense (more than ~1000x as dense as the modern atmosphere) and composed primarily of molecular hydrogen (H2),” said Kaveh Pahlevan, SETI Institute research scientist.

“This finding is significant because H2 is known to be a strong greenhouse gas in dense environments. This dense atmosphere would have produced a strong greenhouse effect, allowing very early warm-to-hot water oceans to be stable on the Martian surface for millions of years until the H2 was gradually lost to space. For this reason, we infer that – at a time before the Earth itself had formed – Mars was born wet.”

The data constraining the model is the deuterium-to-hydrogen (D/H) ratio (deuterium is the heavy isotope of hydrogen) of different Martian samples, including Martian meteorites and those analyzed by Curiosity. Meteorites from Mars are mostly igneous rocks – they formed when the interior of Mars melted, and the magma ascended towards the surface.

The water dissolved in these interior (mantle-derived) igneous samples has a deuterium-to-hydrogen ratio similar to that of the Earth’s oceans, indicating that the two planets started with similar D/H ratios and that their water came from the same source in the early Solar System.

By contrast, Curiosity measured the D/H ratio of an ancient 3-billion-year-old clay on the Martian surface and found that this value is ~3x that of Earth’s oceans. Apparently, by the time these ancient clays formed, the surface water reservoir on Mars – the hydrosphere – had substantially concentrated deuterium relative to hydrogen. The only process known to produce this level of deuterium concentration (or “enrichment”) is preferential loss of the lighter H isotope to space.

The model further shows that if the Martian atmosphere was H2-rich at the time of its formation (and more than ~1000x as dense as today), then the surface waters would naturally be enriched in deuterium by a factor of 2-3x relative to the interior, reproducing the observations. Deuterium prefers partitioning into the water molecule relative to molecular hydrogen (H2), which preferentially takes up ordinary hydrogen and escapes from the top of the atmosphere.

“This is the first published model that naturally reproduces these data, giving us some confidence that the atmospheric evolutionary scenario we have described corresponds to early events on Mars,” said Pahlevan.

Aside from curiosity about the earliest environments on the planets, H2-rich atmospheres are significant in the SETI Institute’s search for life beyond Earth. Experiments going back to the middle of the 20th century show that prebiotic molecules implicated in the origin of life form readily in such H2-rich atmospheres but not so readily in H2-poor (or more “oxidizing”) atmospheres. The implication is that early Mars was a warm version of modern Titan and at least as promising a site for the origin of life as early Earth was, if not more promising.

Research Report:New Clues About Mars’ Early Atmosphere Suggest a Wet Planet Capable of Supporting Life

Related Links

SETI Institute

Mars News and Information at MarsDaily.com
Lunar Dreams and more



Thanks for being here;

We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.


SpaceDaily Contributor

$5 Billed Once

credit card or paypal


SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



RelatedPosts

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

USTC unveils high-energy Mars battery with extended lifespan for exploration


MARSDAILY
Scientists believe Mars rock samples contain organic matter

Washington DC (UPI) Sep 17, 2021


Scientists believe some of the recently-collected rock samples taken by NASA’s Perseverance Mars rover likely contain organic matter.
The four most recent samples are all sedimentary rocks from an ancient river delta in the Red Planet’s Jezero Crater, NASA confirmed this week.
They mark the first-ever sedimentary rocks gathered from another planet.
“The rocks that we have been investigating on the delta have the highest concentration of organic matter that we have yet found on the … read more


Tags: Mars
No Result
View All Result

Recent Posts

  • Explanation found for encrusting of the Martian soil
  • Perseverance surveys its path as it ascends Jezero Crater
  • USTC unveils high-energy Mars battery with extended lifespan for exploration
  • Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024
  • Red Rocks with Green Spots at ‘Serpentine Rapids’

Recent Comments

  • By Benjamin R on Gimme space
  • By Altoria N on Strictly plutonic
  • By Patrick Q on It’s just a phase
  • By Danny S on Strictly plutonic
  • By Alison H on Strictly plutonic

Categories

  • Excursions
  • Kepler Mission
  • NASA
  • NASA Breaking News
  • Physical Preparation
  • Preparation
  • Space News
  • Space Station News
  • Spacewalks
  • Uncategorized
  • Weightlessness Training
  • What Not to Pack
  • What to Pack

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com

No Result
View All Result
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com