• Latest
  • Trending
Organic molecules on Mars linked to atmospheric formaldehyde

Organic molecules on Mars linked to atmospheric formaldehyde

September 20, 2024

Zero‑Gravity Flights and Other Space Tourism Alternatives

August 11, 2025

Journey to the International Space Station: Axiom and SpaceX’s Orbital Tourism

August 11, 2025

Riding Virgin Galactic’s Spaceplane: Delta Class and SpaceShipTwo

August 11, 2025

Sub-Orbital Thrills: Inside a Blue Origin New Shepard Flight

August 11, 2025

High Altitude Balloon Flights: Space Perspective’s Gentle Journey

August 11, 2025
Explanation found for encrusting of the Martian soil

Explanation found for encrusting of the Martian soil

October 31, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Perseverance surveys its path as it ascends Jezero Crater

October 28, 2024
Astrobotic to conduct NASA JPL studies for Mars missions

USTC unveils high-energy Mars battery with extended lifespan for exploration

October 28, 2024
Crystals brought back by astronauts show that the Moon is 40 million years older than scientists thought

Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024

October 27, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Red Rocks with Green Spots at ‘Serpentine Rapids’

October 27, 2024
NASA selects crew for 45-day simulated Mars mission in Houston

NASA selects crew for 45-day simulated Mars mission in Houston

October 23, 2024
Potential microbial habitats in Martian ice

Potential microbial habitats in Martian ice

October 18, 2024
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks
ToursInSpace.com
  • Home
  • About Tours in Space
No Result
View All Result
  • Home
  • About Tours in Space
No Result
View All Result
ToursInSpace.com
No Result
View All Result
Home Uncategorized

Organic molecules on Mars linked to atmospheric formaldehyde

Ensign by Ensign
September 20, 2024
in Uncategorized
0
Organic molecules on Mars linked to atmospheric formaldehyde
189
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter

Organic molecules on Mars linked to atmospheric formaldehyde

by Riko Seibo

Tokyo, Japan (SPX) Sep 20, 2024

RelatedPosts

Zero‑Gravity Flights and Other Space Tourism Alternatives

Journey to the International Space Station: Axiom and SpaceX’s Orbital Tourism

Riding Virgin Galactic’s Spaceplane: Delta Class and SpaceShipTwo





Mars, now a cold and dry planet, once had liquid water, which raises the possibility of ancient life. In pursuit of this idea, researchers at Tohoku University developed a model showing how organic matter could have formed in Mars’ ancient atmosphere.

Organic matter, which can originate from living organisms or chemical processes, contains carbon isotopes that give clues about its formation. NASA’s Curiosity rover previously found Martian sediment samples unusually depleted in the carbon isotope 13C, but the reasons behind this were unclear.

Led by Shungo Koyama, Tatsuya Yoshida, and Naoki Terada, the Tohoku University team explored the role of formaldehyde (H2CO) in Mars’ atmospheric history. Their model suggests that formaldehyde, produced in the planet’s atmosphere billions of years ago, may explain the curious 13C depletion observed by the rover. Formaldehyde is key to forming complex organic compounds like sugars, which are essential to life.

The team’s model used a combination of photochemical and climate models to estimate how the carbon isotope ratio of formaldehyde changed on Mars over 3 to 4 billion years. They found that the depletion of 13C resulted from the photodissociation of CO2 by ultraviolet sunlight. The model also showed that factors like atmospheric pressure, volcanic hydrogen emissions, and the planet’s CO-to-CO2 ratio influenced the variations in carbon isotope ratios.

“This model provides a possible explanation for previously unexplained findings, such as why 13C was mysteriously depleted,” Koyama, a graduate student at Tohoku University, remarked.

These findings suggest that formaldehyde might have played a crucial role in producing bio-important molecules, such as sugars and ribose (an RNA component), on ancient Mars.

Research Report:Stable carbon isotope evolution of formaldehyde on early Mars

Related Links

Tohoku University

Mars News and Information at MarsDaily.com
Lunar Dreams and more

Tags: Mars
No Result
View All Result

Recent Posts

  • Zero‑Gravity Flights and Other Space Tourism Alternatives
  • Journey to the International Space Station: Axiom and SpaceX’s Orbital Tourism
  • Riding Virgin Galactic’s Spaceplane: Delta Class and SpaceShipTwo
  • Sub-Orbital Thrills: Inside a Blue Origin New Shepard Flight
  • High Altitude Balloon Flights: Space Perspective’s Gentle Journey

Recent Comments

  • By Benjamin R on Gimme space
  • By Altoria N on Strictly plutonic
  • By Patrick Q on It’s just a phase
  • By Danny S on Strictly plutonic
  • By Alison H on Strictly plutonic

Categories

  • Excursions
  • Kepler Mission
  • NASA
  • NASA Breaking News
  • Physical Preparation
  • Preparation
  • Space News
  • Space Station News
  • Spacewalks
  • Uncategorized
  • Weightlessness Training
  • What Not to Pack
  • What to Pack

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com

No Result
View All Result
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com