• Latest
  • Trending
Exploring methane mysteries on Mars: Curiosity Rover’s new findings

Hubble and MAVEN collaborate to uncover Mars’ water loss

September 6, 2024
Explanation found for encrusting of the Martian soil

Explanation found for encrusting of the Martian soil

October 31, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Perseverance surveys its path as it ascends Jezero Crater

October 28, 2024
Astrobotic to conduct NASA JPL studies for Mars missions

USTC unveils high-energy Mars battery with extended lifespan for exploration

October 28, 2024
Crystals brought back by astronauts show that the Moon is 40 million years older than scientists thought

Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024

October 27, 2024
Comet Geyser: Perseverance’s 24th Rock Core

Red Rocks with Green Spots at ‘Serpentine Rapids’

October 27, 2024
NASA selects crew for 45-day simulated Mars mission in Houston

NASA selects crew for 45-day simulated Mars mission in Houston

October 23, 2024
Potential microbial habitats in Martian ice

Potential microbial habitats in Martian ice

October 18, 2024
Perseverance just keeps roving across Mars

Perseverance just keeps roving across Mars

October 18, 2024
New Team Evaluates Plans for NASA’s Mars Sample Return Program

New Team Evaluates Plans for NASA’s Mars Sample Return Program

October 17, 2024
Sandia evaluates heat shields for Mars Sample Return and Titan missions

Sandia evaluates heat shields for Mars Sample Return and Titan missions

October 16, 2024
NASA probe Europa Clipper lifts off for Jupiter’s icy moon

NASA probe Europa Clipper lifts off for Jupiter’s icy moon

October 14, 2024
Here’s How Curiosity’s Sky Crane Changed the Way NASA Explores Mars

Controlled Propulsion for Gentle Landings

October 13, 2024
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks
ToursInSpace.com
  • Home
  • About Tours in Space
No Result
View All Result
  • Home
  • About Tours in Space
No Result
View All Result
ToursInSpace.com
No Result
View All Result
Home Uncategorized

Hubble and MAVEN collaborate to uncover Mars’ water loss

Ensign by Ensign
September 6, 2024
in Uncategorized
0
Exploring methane mysteries on Mars: Curiosity Rover’s new findings
190
SHARES
1.5k
VIEWS
Share on FacebookShare on Twitter

Hubble and MAVEN collaborate to uncover Mars’ water loss

by Clarence Oxford

Los Angeles CA (SPX) Sep 06, 2024

RelatedPosts

Explanation found for encrusting of the Martian soil

Perseverance surveys its path as it ascends Jezero Crater

USTC unveils high-energy Mars battery with extended lifespan for exploration




Mars, once a planet with abundant water, now presents a mystery regarding the fate of its water resources. While scientists believe some water may have gone underground over the past 3 billion years, a significant amount has escaped. NASA’s Hubble Space Telescope and the Mars Atmosphere and Volatile Evolution (MAVEN) mission are now shedding light on this longstanding mystery.

“There are only two places water can go. It can freeze into the ground, or the water molecule can break into atoms, and the atoms can escape from the top of the atmosphere into space,” said John Clarke, study leader from the Center for Space Physics at Boston University. “To understand how much water there was and what happened to it, we need to understand how the atoms escape into space.”

Clarke’s team used data from Hubble and MAVEN to assess the current escape rate of hydrogen atoms into space, which enabled them to trace the escape process back through time, offering insights into Mars’ water history.

Hydrogen and Deuterium: Clues to Water Loss

Water molecules in Mars’ atmosphere break apart due to sunlight, producing hydrogen and oxygen atoms. The team measured hydrogen and deuterium, a form of hydrogen with an additional neutron, giving it double the mass of regular hydrogen. This added mass causes deuterium to escape more slowly into space than hydrogen.

Over time, Mars has lost more hydrogen than deuterium, resulting in a higher deuterium-to-hydrogen ratio. By measuring this ratio, scientists can estimate how much water existed during Mars’ warmer, wetter periods. By examining current escape rates, researchers can infer the processes that influenced water loss over the past 4 billion years.

Although MAVEN provided most of the data, it was not always able to detect deuterium emissions during the Martian winter due to Mars’ elliptical orbit, which takes it far from the Sun. Clarke and his team turned to Hubble to fill in gaps in the data and complete a picture of hydrogen and deuterium escape over a full Martian year – 687 Earth days. Hubble also provided historical data stretching back to 1991, prior to MAVEN’s arrival at Mars in 2014.

Together, Hubble and MAVEN offered the first comprehensive view of hydrogen atoms escaping Mars into space.

Unraveling the Martian Atmosphere

“In recent years scientists have found that Mars has an annual cycle that is much more dynamic than people expected 10 or 15 years ago,” explained Clarke. “The whole atmosphere is very turbulent, heating up and cooling down on short timescales, even down to hours. The atmosphere expands and contracts as the brightness of the Sun at Mars varies by 40 percent over the course of a Martian year.”

The team observed that escape rates for hydrogen and deuterium increase dramatically when Mars nears the Sun. Previously, scientists thought these atoms drifted slowly upward through the atmosphere before escaping. However, this new data reveals that the atmospheric conditions fluctuate rapidly. As Mars approaches the Sun, water molecules rise quickly, releasing hydrogen and deuterium atoms at higher altitudes.

Another critical finding was that the rapid changes in hydrogen and deuterium escape rates require additional energy to explain. At the upper atmosphere’s temperature, only a small fraction of atoms move fast enough to escape Mars’ gravity. These super-thermal atoms are created when they receive an extra energy boost – either through collisions with solar wind protons or chemical reactions triggered by sunlight.

Implications Beyond Mars

Understanding Mars’ water loss is key to comprehending not only the evolution of planets within our solar system but also those orbiting other stars. As astronomers discover more Earth-sized planets, Mars offers a crucial analog for understanding conditions on distant worlds. Mars, Earth, and Venus, all within or near our solar system’s habitable zone, have vastly different atmospheres today. Studying Mars and its atmospheric history offers vital insights into planetary evolution across the galaxy.

Research Report:Martian atmospheric hydrogen and deuterium: Seasonal changes and paradigm for escape to space

Related Links

MAVEN

Mars News and Information at MarsDaily.com
Lunar Dreams and more

Tags: Mars
No Result
View All Result

Recent Posts

  • Explanation found for encrusting of the Martian soil
  • Perseverance surveys its path as it ascends Jezero Crater
  • USTC unveils high-energy Mars battery with extended lifespan for exploration
  • Latest Findings from China’s Lunar and Mars Exploration Missions 2022-2024
  • Red Rocks with Green Spots at ‘Serpentine Rapids’

Recent Comments

  • By Benjamin R on Gimme space
  • By Altoria N on Strictly plutonic
  • By Patrick Q on It’s just a phase
  • By Danny S on Strictly plutonic
  • By Alison H on Strictly plutonic

Categories

  • Excursions
  • Kepler Mission
  • NASA
  • NASA Breaking News
  • Physical Preparation
  • Preparation
  • Space News
  • Space Station News
  • Spacewalks
  • Uncategorized
  • Weightlessness Training
  • What Not to Pack
  • What to Pack

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com

No Result
View All Result
  • About Tours in Space
  • Cart
  • Checkout
  • My account
  • Shop
  • Thanks

© 2012-2024 ToursInSpace.com